

Messtechnik GmbH & Co. KG

BREXDLL

🚳 - Automatisches Speichern 💽 🗒 🦻 - 🖓 - 🗧 – IBREXDEL - Kompatibilitätsmodus --, 🕕 – ш – х 🖓 Kommentare 🕼 Preigeben 👻 Datei Start Einfügen Seitenlayout Formein Daten Überprüfen Ansicht Hilfe H4

 \checkmark : $\times \checkmark f_x$

Adj. 🖾 Help

IBREXDLL 7 9.93

English

-

Column 7

Measuring value request
 Measuring value request
 Function key
 For which
 F1
 V
 Shift+F2-> on/off
 V
 Shift+F2-> on/off
 V
 V

Copyright © 2025 All rights reserved System-Setup

PC- and Measurement Instrument-Connections

1.1 Radio module (IBR-ISM) with Addr. 1 on 1.2 Radio module (IBR-ISM) with Addr. 2 on 1.3 Radio module (IBR-ISM) with Addr. 3 on

1.4 Radio module (IBR-ISM) with Addr. 4 on

1.5 Radio module (IBR-ISM) with Addr. 5 on

1.6 Radio module (IBR-ISM) with Addr. 6 on 1.7 Radio module (IBR-ISM) with Addr. 7 on

1.8 Radio module (IBR-ISM) with Addr. 8 on 1.9 Radio module (IBR-ISM) with Addr. 9 on

ADR

IER - Messtechnik GmbH & Co.

IBREXDLL +

	I 1 10 Dadio module / TRD-JSM \ with Addr 10 on	Column 10	_1(
ore [mm], Xq/R-Shewhart.				
673 E			USL	28.8000
	28,791	·····	Nom	28,5000
.594	***************************************		LSL	28.2000
.565 3 米 作者 11米 *	A BARRY AND A BARR		N	500
	**************************************		+NG	0
.536 = [. []	「「「」」 「「「」」 「「」」 「」」 「」」 「」」 「」」		-NG	0
.507 =X X	28.539		P	0.0000
			Xq	28.5493
.4/8 <u>-</u>	20.476		Max	28.6960
	1000 1000 1000 1000 1000 1000 1000 100		Min	28.4120
10 20 30 40 :	28.350		R	0.2840
			S	0.0492
	XX X		Cm	2.03
0.14 - X - X - X - X - X - X - X - X - X -	28.224		Cmk	1.70
	NA 28.161 =		Cp	2.03
		60 90 120 150 180	Cpk	1.70
0.00 -	0 50 6			

1

Additional data
 Date Time
 IV IV
 IV

OK

V

V

Cance

Messwerte einlesen und auswerten in MS-Excel

Mit dem Programm IBREXDLL können Messdaten von allen IBR - Interface - und Messgeräten in MS-Excel eingelesen werden und den Zellen einer beliebigen Excel - Mappe frei zugewiesen werden. Die erfassten Messdaten können anschließend statistisch über Regelkarten, Histogrammen, statistische Daten, ... ausgewertet werden.

Merkmale

- Einfache und übersichtliche Bedienung
- Merkmal- oder teilebezogene Messdatenerfassung
- Messwert-Erfassung über Datentaste am Messgerät, Funktionstasten am PC oder Hand- / Fußtaster am Interface
- Automatische Zuordnung der Messeingänge zu Spalten oder cursorgesteuerte Messdatenablage in der Excel-Tabelle
- Ablage von Datums- und Uhrzeitinformation zusammen mit den Messwerten
- Anzeige von bis zu 20 Messeingängen auf Ziffern- und Balkenanzeigen mit programmierbaren Toleranzmarken
- SPC Elemente (Regelkarte, Histogramm, statistische Daten, ...)
- Zeitgesteuerte Messwertaufnahme
- Nullabgleich und Kalibrierung von Messeingängen
- Keine Beeinträchtigung der Standard Excel-Funktionen (wie z. B. Verrechnung der eingelesenen Messwerte, Nutzung von Diagrammfunktionen, ...)
- Europäische und Asiatische Sprachen
- Lauffähig unter Windows XP ... 11 (32 oder 64 bit) und MS-Excel (32 bit oder 64 bit)

Einstellungen der IBREXDLL

Das Setup-Fenster mit allen Einstellungen der IBREXDLL öffnet sich beim ersten Programmstart.

1 Auswahl der angeschlossenen IBR-Geräte

Liste der angeschlossenen Messeingänge baut sich automatisch auf

- (2) Zuordnung der Spalten zu den einzelnen Messeingängen oder Vorgabe für die Cursor gesteuerte Messwerterfassung
- 3 Auswahl der Funktionstaste zur Messwertanforderung des Messeingangs
- Aktivieren bzw. deaktivieren des Hand- / Fußtasters für den Messeingang
- (5) Aktivieren bzw. deaktivieren der Ablage von Datums- und Uhrzeitinformationen
- 6 Aktivieren bzw. deaktivieren der Datenübertragung per Datentaste am Messgerät
- Ø Balken- / Ziffernanzeige für Messeingänge programmieren, Zeit-getriggerte Messwerterfassung programmieren, ...

A STANDARD

System-Setup X											
PC- und Messgeräteanschlüsse											
	ADR	Messeingang	Tabellenaufbau	(3 Mess Funktionstaste	wer	t-Anforderung Fusstaster		Zusatz Datum	daten Uhrzeit	Geräte- Triggerung
-	N	Funkmodul (IBR-ISM) mit Adresse 1 ein	Spalte 1	•	F1 💌		Shift+F1 -> on/off	-		<u>ש ע</u>	6
	1.2	Fürkmodul (IBR-ISM) mit Adresse 2 ein	Spalte 2	•	F2 💌		Shift+F2 -> on/off	-			
	1.3	Funkmodu IBR-ISM) mit Adresse 3 ein	Spalte 3	-	•			-			
	1.4	Funkmodul (IBR-ISM) mit Adresse 4 ein	Spalte 4	•	🔻			-			
	1.5	Funkmodul (IBR-ISM) mit Adresse 5 ein	Spalte 5	•	🔻			-			
	1.6	Funkmodul (IBR-ISM) mit Adresse 6 ein	Spalte 6	•	🔻			-			
	1.7	Funkmodul (IBR-ISM) mit Adresse 7 ein	Spalte 7	•	🔻			~			
	1.8	Funkmodul (IBR-ISM) mit Adresse 8 ein	Spalte 8	•	💌			~			
	1.9	Funkmodul (IBR-ISM) mit Adresse 9 ein	Spalte 9	•	🔻			-			
•	1.10	Funkmodul (IBR-ISM) mit Adresse 10 ein	Spalte 10	•	v			-			~
	~	1									
(7)	Optionale Funktionen							ОК		Abbruch

Read and analyse measured values in MS-Excel

0

Engli

Help

7 9.93

Copyright © 2025

🕫 Adj.

IBREXDLL

The IBREXDLL software allows reading in measured data from all IBR interface and measuring instruments to MS-Excel. The data can be assigned freely to the cells of any Excel workbook. Afterwards the collected measured values can be statistically analysed by control charts, histograms, statistical data,

Features

- Simple and easy handling

- Characteristic or component dependent data collection

 Measured value collection by data key on gauge, by function keys on PC or by hand / foot switch on interface

- Automatic assignment of measuring inputs to columns or cursor controlled data collection in Excel table

- Date and time information can be stored together with measured data

- Display of up to 20 measuring inputs on numeric and column displays with programmable tolerance limits

- SPC elements (control chart, histogram, statistical data, ...)

- Time triggered data collection

- Zero-adjustment and calibration of measuring inputs

 No limitation of standard Excel functions (e.g. calculations with collected measured values, usage of diagram functions, ...)

- European and Asian languages

- Executable under Windows XP ... 11 (32 or 64 bit) and MS - Excel (32 bit or 64 bit)

Settings of IBREXDLL

 19:800 AM
 1.3311

 19:800 AM
 0.8714

 19:811 AM
 0.7958

 19:811 AM
 0.7958

 19:811 AM
 0.0039

 19:811 AM
 0.0044

 19:811 AM
 0.0044

 19:811 AM
 0.0044

 19:812 AM
 0.0044

 19:812 AM
 0.0042

 19:812 AM
 0.0035

 19:812 AM
 0.0023

 19:812 AM
 0.0023

 19:812 AM
 0.0023

 19:813 AM
 0.0021

 19:813 AM
 0.0275

 19:813 AM
 0.2444

 19:813 AM
 0.2453

Tabelle1

Bore [mm], Xq

The setup window of IBREXDLL contains all settings of IBREXDLL and opens automatically on first program start.

 Selection of connected IBR instruments

List of connected measuring inputs is automatically built up

- (2) Assignment of columns to the different measuring inputs or commands for cursor controlled data collection
- 3 Selection of a function key for data request of the measuring input
- (4) Activation or deactivation of the hand / foot switch for the measuring input
- 6 Activation or deactivation of date and time information storage
- Activation or deactivation of data transfer
 by data button of gauge
- Programming of column and numeric displays for measuring inputs, time controlled measured value collection, ...

Sj	/stem-	Setup								×
	PC- ar	d Measurement Instrument-								
	ADR	Measuring input	2 Table structure	3 Measu Function key	ring	value request		Addition Date	al data Time	Gauge Triggering
·	1.1	Radio module (IBR-ISM) with Addr. 1 on	Column 1	F1 💌		Shift+F1 -> on/off	•	⊽ (5		6
	12	Radio module (IBR-ISM) with Addr. 2 on	Column 2 💌	F2 💌		Shift+F2 -> on/off	-	◄		
	1.3	Radio module (IBR-ISM) with Addr. 3 on	Column 3 💌	💌			~			
	1.4	Radio module (IBR-ISM) with Addr. 4 on	Column 4 💌	🔻			-			
	1.5	Radio module (IBR-ISM) with Addr. 5 on	Column 5 💌	🔻			-			
	1.6	Radio module (IBR-ISM) with Addr. 6 on	Column 6 🗨	🔻			~			
	1.7	Radio module (IBR-ISM) with Addr. 7 on	Column 7 💌	🔻			-			
	1.8	Radio module (IBR-ISM) with Addr. 8 on	Column 8 💌	🔻			-			
	1.9	Radio module (IBR-ISM) with Addr. 9 on	Column 9 💌	🔻			-			
•	1.10	Radio module (IBR-ISM) with Addr. 10 on	Column 10 💌	💌			Ŧ			\checkmark
	1	Optional functions						ОК		Cancel

